Expanding maps on 2-step infra-nilmanifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expanding Maps on Infra-nilmanifolds of Homogeneous Type

In this paper we investigate expanding maps on infra-nilmanifolds. Such manifolds are obtained as a quotient E\L, where L is a connected and simply connected nilpotent Lie group and E is a torsion-free uniform discrete subgroup of LoC, with C a compact subgroup of Aut(L). We show that if the Lie algebra of L is homogeneous (i.e., graded and generated by elements of degree 1), then the correspon...

متن کامل

A Common Fixed Point Theorem for Commuting Expanding Maps on Nilmanifolds

A self-map f of a compact connected manifold M is expanding if it locally expands distances with respect to some metric. We consider the case when M is a nilmanifold and we discuss a new common fixed point theorem for two expanding maps which commute.

متن کامل

On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type

‎In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five‎. ‎Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces‎. ‎Moreover‎, ‎we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...

متن کامل

Deformation of 2-Step Nilmanifolds with Abelian Complex Structures

We develop deformation theory for abelian invariant complex structures on a nilmanifold, and prove that in this case the invariance property is preserved by the Kuranishi process. A purely algebraic condition characterizes the deformations leading again to abelian structures, and we prove that such deformations are unobstructed. Various examples illustrate the resulting theory, and the behavior...

متن کامل

Geodesic Conjugacy in Two - Step Nilmanifolds

Two Riemannian manifolds are said to have C-conjugate geodesic flows if there exist an C diffeomorphism between their unit tangent bundles which intertwines the geodesic flows. We obtain a number of rigidity results for the geodesic flows on compact 2-step Riemannian nilmanifolds: For generic 2-step nilmanifolds the geodesic flow is C rigid. For special classes of 2-step nilmanifolds, we show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2002

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(00)00104-8